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Forecasting: Problem Formulation

• Forecasting: predicting the future values of the series  
using current information set

• Current information set consists of current and past 
values of the series of interest and perhaps other 
“exogenous” series



Time Series Forecasting Requires Models

A statistical model or a 
machine learning 
algorithm 

Forecast 
horizon: H

Information Set:



A Naïve, Rule-based Model:
A model, f(), could be as simple as “a rule” - naive model: 

The forecast for tomorrow is the observed value today

Forecast 
horizon: h=1

Information Set:
Persistent Forecast



“Rolling” Average Model

The forecast for time t+1 is an average of the observed 
values from a predefined, past k time periods

Forecast horizon: h=1 Information Set:



Simple Exponential Smoothing Model

Weights are declining exponentially 
as the series moves to the past
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An 1-Minute Overview of ARIMA 
Model



Univariate Statistical Time Series Models

The focus is on the statistical relationship of one time series

values from its own series
exogenous series

Model the dynamics of series y

The future is a function of the past



Model Formulation

Easier to start with

Autoregressive Moving Average Model (ARMA) 



Autoregressive Moving Average Model (ARMA) 

lag values from own 
series shocks / “error” terms 

mean of the series



Autoregressive Integrated Moving Average 
(ARIMA) Model

My 3-hour tutorial at 
PyData San Francisco 2016
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Multivariate Time Series Modeling 
A system of K equations



Multivariate Time Series Modeling 
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lag-1 of the K series

lag-p of the K series

exogenous series

Dynamics of each of the series Interdependence among the series 

Need to be defined



Joint Modeling of Multiple Time Series



● a system of linear equations of the K series being 
modeled

● only applies to stationary series 
● non-stationary series can be transformed into 

stationary ones using simple differencing (note: if the 
series are not co-integrated, then we can still apply 
VAR ("VAR in differences"))

Vector Autoregressive (VAR) Models



Vector Autoregressive (VAR) Model of 
Order 1
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Each series is modelled by its own lag as well as other 
series’ lags



Multivariate Time Series Modeling 
Matrix Formulation



General Steps to Build VAR Model
1. Ingest the series
2. Train/validation/test split the series
3. Conduct exploratory time series data analysis on the training set
4. Determine if the series are stationary
5. Transform the series 
6. Build a model on the transformed series
7. Model diagnostic
8. Model selection (based on some pre-defined criterion)
9. Conduct forecast using the final, chosen model
10.Inverse-transform the forecast
11. Conduct forecast evaluation

Iterative



Index of Consumer Sentiment

autocorrelation function 
(ACF) graph

Partial autocorrelation 
function (PACF) graph



Series Transformation



Transforming the Series
Take the simple-difference of the natural logarithmic transformation of 
the series

note: difference-transformation 
generates missing values



Transformed Series
Consumer Sentiment Beer Consumption



Is the method we propose capable of answering the following questions?
● What are the dynamic properties of these series? Own lagged 

coefficients

● How are these series interact, if at all? Cross-series lagged 
coefficients

VAR Model Proposed



VAR Model Estimation and Output



VAR Model Output - Estimated Coefficients



VAR Model Output - Var-Covar Matrix



VAR Model Diagnostic

UMCSENT Beer



VAR Model Selection
Model selection, in the case of VAR(p), is the choice of the order and 
the specification of each equation

Information criterion can be used for model selection:



VAR Model - Inverse Transform 
Don’t forget to inverse-transform the forecasted series!



VAR Model - Forecast Using the Model

The Forecast Equation:



VAR Model Forecast

where T is the last observation period and l is the lag



What do the result mean in this context?
Don’t forget to put the result in the existing context!
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Feed-Forward Network with a Single Output

inputs output

Ø information does not account 
for time ordering

Ø inputs are processed 
independently

Ø no “device” to keep the past 
information

Network architecture does not have "memory" built in

Hidden layers



Recurrent Neural Network (RNN)

A network architecture that can 
• retain past information
• track the state of the world, and 
• update the state of the world as the network moves forward

Handles variable-length sequence by having a recurrent hidden state 
whose activation at each time is dependent on that of the previous time. 



Standard Recurrent Neural Network (RNN)



Limitation of Vanilla RNN Architecture

Exploding (and vanishing) gradient problems
(Sepp Hochreiter, 1991 Diploma Thesis)



Long Short Term Memory (LSTM) Network



LSTM: Hochreiter and Schmidhuber (1997)
The architecture of memory cells and gate units from the original 

Hochreiter and Schmidhuber (1997) paper



Long Short Term Memory (LSTM) Network
Another representation of the architecture of memory cells and gate 
units: Greff, Srivastava, Koutnık, Steunebrink, Schmidhuber (2016)



LSTM: A Stretch

LSTM Memory 
Cell

ht-1 ht



LSTM: A Stretch

Christopher Olah’s blog
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM: A Stretch
LSTM Memory 

Cell
ht-1 ht



LSTM: A Stretch

LSTM Memory 
Cell

ht-1 ht

Use memory cells and gated units for information flow 
hidden state
(value from 
activation function)
in time step t-1

hidden state
(value from 
activation function)
in time step t



LSTM: A Stretch
LSTM Memory 

Cell
ht-1 hthidden state memory cell (state)

Output gate

Forget gate Input gate

Training uses Backward Propagation Through Time (BPTT)



LSTM: A Stretch
LSTM Memory 

Cell
ht-1 ht

hidden state(t)

memory cell (t)

Training uses Backward Propagation Through Time (BPTT)

Candidate
memory cell (t)

Output gate

Input gate

Forget gate



Implementation in Keras
Some steps to highlight: 

• Formulate the series for a RNN supervised learning regression problem 
(i.e. (Define target and input tensors))

• Scale all the series
• Split the series for training/development/testing
• Reshape the series for (Keras) RNN implementation
• Define the (initial) architecture of the LSTM Model

○ Define a network of layers that maps your inputs to your targets and 
the complexity of each layer (i.e. number of memory cells)

○ Configure the learning process by picking a loss function, an 
optimizer, and metrics to monitor

• Produce the forecasts and then reverse-scale the forecasted series
• Calculate loss metrics (e.g. RMSE, MAE)

Note that stationarity, as defined previously, is not a requirement



LSTM Architecture Design, Training, Evaluation



LSTM: Forecast Results

UMSCENT
Beer
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VAR vs. LSTM: Data Type

macroeconomic time 
series, financial time 
series, business time 
series, and other numeric 
series

DNA sequences, images, 
voice sequences, texts, all 
the numeric time series 
(that can be modeled by 
VAR)

VAR LSTM



Layer(s) of many non-
linear transformations

VAR vs. LSTM: Parametric form

A linear system of 
equations - highly 
parameterized (can be 
formulated in the general 
state space model)

VAR LSTM



• stationarity not a 
requirement but 
require feature scaling

VAR vs. LSTM: Stationarity Requirement

• applied to stationary 
time series only 

• its variant (e.g. Vector 
Error Correction 
Model) can be applied 
to co-integrated series

VAR LSTM



• data preprocessing
is a lot more involved

• network 
architecture design, 
model training and 
hyperparameter
tuning requires much 
more efforts

VAR vs. LSTM: Model Implementation

• data preprocessing
is straight-forward

• model specification
is relative straight-
forward, model 
training time is fast

VAR LSTM



What were not covered in this lecture?

As this is an introductory, 30-minute presentation on AR-
type and NN-type models, I did not cover the following 
topics:

• State Space Representation of VAR
• Kalman Filter
• Many regime-switching version of AR-type models
• Variation of VAR
• The many variations of RNN and LSTM



Thank You

jyau@Berkeley.edu
https://www.linkedin.com/in/jeffreyyau/
https://github.com/jeffrey-yau

Big Data and Machine Learning Leaders Summit 
Hong Kong 2018 


