
Jeffrey Yau
Chief Data Scientist, AllianceBernstein, L.P.
Lecturer, UC Berkeley Masters of Information Data
Science

Time Series Forecasting Using
Statistics and Machine Learning

About Me
Education

PhD in Economics
– focus on Econometrics

B.S. Mathematics

Professional Experience
Chief Data Scientist
VP of Data Science
VP Head of Quant Research

Data Science for Good Involvement in DS Community

Agenda
Section I: Time series forecasting problem formulation
Section II: Statistical and machine learning approaches

a. Autoregressive Integrated Moving Average (ARIMA) Model
b. Vector Autoregressive (VAR) Model
c. Recurrent Neural Network (RNN)

Ø Formulation
Ø Python Implementation

Section III: Approach Comparison

Agenda
Section I: Time series forecasting problem formulation
Section II: Statistical and machine learning approaches

a. Autoregressive Integrated Moving Average (ARIMA) Model
b. Vector Autoregressive (VAR) Model
c. Recurrent Neural Network (RNN)

Ø Formulation
Ø Python Implementation

Section III: Approach Comparison

Forecasting: Problem Formulation

• Forecasting: predicting the future values of the series
using current information set

• Current information set consists of current and past
values of the series of interest and perhaps other
“exogenous” series

Time Series Forecasting Requires Models

A statistical model or a
machine learning
algorithm

Forecast
horizon: H

Information Set:

A Naïve, Rule-based Model:
A model, f(), could be as simple as “a rule” - naive model:

The forecast for tomorrow is the observed value today

Forecast
horizon: h=1

Information Set:
Persistent Forecast

“Rolling” Average Model

The forecast for time t+1 is an average of the observed
values from a predefined, past k time periods

Forecast horizon: h=1 Information Set:

Simple Exponential Smoothing Model

Weights are declining exponentially
as the series moves to the past

Agenda
Section I: Time series forecasting problem formulation
Section II: Statistical and machine learning approaches

a. Autoregressive Integrated Moving Average (ARIMA) Model
b. Vector Autoregressive (VAR) Model
c. Recurrent Neural Network (RNN)

Ø Formulation
Ø Python Implementation

Section III: Approach Comparison

An 1-Minute Overview of ARIMA
Model

Univariate Statistical Time Series Models

The focus is on the statistical relationship of one time series

values from its own series
exogenous series

Model the dynamics of series y

The future is a function of the past

Model Formulation

Easier to start with

Autoregressive Moving Average Model (ARMA)

Autoregressive Moving Average Model (ARMA)

lag values from own
series shocks / “error” terms

mean of the series

Autoregressive Integrated Moving Average
(ARIMA) Model

My 3-hour tutorial at
PyData San Francisco 2016

Agenda
Section I: Time series forecasting problem formulation
Section II: Statistical and machine learning approaches

a. Autoregressive Integrated Moving Average (ARIMA) Model
b. Vector Autoregressive (VAR) Model
c. Recurrent Neural Network (RNN)

Ø Formulation
Ø Python Implementation

Section III: Approach Comparison

Multivariate Time Series Modeling
A system of K equations

Multivariate Time Series Modeling
K

 e
qu

at
io

ns

lag-1 of the K series

lag-p of the K series

exogenous series

Dynamics of each of the series Interdependence among the series

Need to be defined

Joint Modeling of Multiple Time Series

● a system of linear equations of the K series being
modeled

● only applies to stationary series
● non-stationary series can be transformed into

stationary ones using simple differencing (note: if the
series are not co-integrated, then we can still apply
VAR ("VAR in differences"))

Vector Autoregressive (VAR) Models

Vector Autoregressive (VAR) Model of
Order 1

A
sy

st
em

 o
f K

 e
qu

at
io

ns

Each series is modelled by its own lag as well as other
series’ lags

Multivariate Time Series Modeling
Matrix Formulation

General Steps to Build VAR Model
1. Ingest the series
2. Train/validation/test split the series
3. Conduct exploratory time series data analysis on the training set
4. Determine if the series are stationary
5. Transform the series
6. Build a model on the transformed series
7. Model diagnostic
8. Model selection (based on some pre-defined criterion)
9. Conduct forecast using the final, chosen model
10.Inverse-transform the forecast
11. Conduct forecast evaluation

Iterative

Index of Consumer Sentiment

autocorrelation function
(ACF) graph

Partial autocorrelation
function (PACF) graph

Series Transformation

Transforming the Series
Take the simple-difference of the natural logarithmic transformation of
the series

note: difference-transformation
generates missing values

Transformed Series
Consumer Sentiment Beer Consumption

Is the method we propose capable of answering the following questions?
● What are the dynamic properties of these series? Own lagged

coefficients

● How are these series interact, if at all? Cross-series lagged
coefficients

VAR Model Proposed

VAR Model Estimation and Output

VAR Model Output - Estimated Coefficients

VAR Model Output - Var-Covar Matrix

VAR Model Diagnostic

UMCSENT Beer

VAR Model Selection
Model selection, in the case of VAR(p), is the choice of the order and
the specification of each equation

Information criterion can be used for model selection:

VAR Model - Inverse Transform
Don’t forget to inverse-transform the forecasted series!

VAR Model - Forecast Using the Model

The Forecast Equation:

VAR Model Forecast

where T is the last observation period and l is the lag

What do the result mean in this context?
Don’t forget to put the result in the existing context!

Agenda
Section I: Time series forecasting problem formulation
Section II: Statistical and machine learning approaches

a. Autoregressive Integrated Moving Average (ARIMA) Model
b. Markov-Switching Autoregressive (MS-AR) Model
c. Recurrent Neural Network (RNN)

Ø Formulation
Ø Python Implementation

Section III: Approach Comparison

Feed-Forward Network with a Single Output

inputs output

Ø information does not account
for time ordering

Ø inputs are processed
independently

Ø no “device” to keep the past
information

Network architecture does not have "memory" built in

Hidden layers

Recurrent Neural Network (RNN)

A network architecture that can
• retain past information
• track the state of the world, and
• update the state of the world as the network moves forward

Handles variable-length sequence by having a recurrent hidden state
whose activation at each time is dependent on that of the previous time.

Standard Recurrent Neural Network (RNN)

Limitation of Vanilla RNN Architecture

Exploding (and vanishing) gradient problems
(Sepp Hochreiter, 1991 Diploma Thesis)

Long Short Term Memory (LSTM) Network

LSTM: Hochreiter and Schmidhuber (1997)
The architecture of memory cells and gate units from the original

Hochreiter and Schmidhuber (1997) paper

Long Short Term Memory (LSTM) Network
Another representation of the architecture of memory cells and gate
units: Greff, Srivastava, Koutnık, Steunebrink, Schmidhuber (2016)

LSTM: A Stretch

LSTM Memory
Cell

ht-1 ht

LSTM: A Stretch

Christopher Olah’s blog
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: A Stretch
LSTM Memory

Cell
ht-1 ht

LSTM: A Stretch

LSTM Memory
Cell

ht-1 ht

Use memory cells and gated units for information flow
hidden state
(value from
activation function)
in time step t-1

hidden state
(value from
activation function)
in time step t

LSTM: A Stretch
LSTM Memory

Cell
ht-1 hthidden state memory cell (state)

Output gate

Forget gate Input gate

Training uses Backward Propagation Through Time (BPTT)

LSTM: A Stretch
LSTM Memory

Cell
ht-1 ht

hidden state(t)

memory cell (t)

Training uses Backward Propagation Through Time (BPTT)

Candidate
memory cell (t)

Output gate

Input gate

Forget gate

Implementation in Keras
Some steps to highlight:

• Formulate the series for a RNN supervised learning regression problem
(i.e. (Define target and input tensors))

• Scale all the series
• Split the series for training/development/testing
• Reshape the series for (Keras) RNN implementation
• Define the (initial) architecture of the LSTM Model

○ Define a network of layers that maps your inputs to your targets and
the complexity of each layer (i.e. number of memory cells)

○ Configure the learning process by picking a loss function, an
optimizer, and metrics to monitor

• Produce the forecasts and then reverse-scale the forecasted series
• Calculate loss metrics (e.g. RMSE, MAE)

Note that stationarity, as defined previously, is not a requirement

LSTM Architecture Design, Training, Evaluation

LSTM: Forecast Results

UMSCENT
Beer

Agenda
Section I: Time series forecasting problem formulation
Section II: Statistical and machine learning approaches

a. Autoregressive Integrated Moving Average (ARIMA) Model
b. Markov-Switching Autoregressive (MS-AR) Model
c. Vector Autoregressive (VAR) Model

Ø Formulation
Ø Python Implementation

Section III: Approach Comparison

VAR vs. LSTM: Data Type

macroeconomic time
series, financial time
series, business time
series, and other numeric
series

DNA sequences, images,
voice sequences, texts, all
the numeric time series
(that can be modeled by
VAR)

VAR LSTM

Layer(s) of many non-
linear transformations

VAR vs. LSTM: Parametric form

A linear system of
equations - highly
parameterized (can be
formulated in the general
state space model)

VAR LSTM

• stationarity not a
requirement but
require feature scaling

VAR vs. LSTM: Stationarity Requirement

• applied to stationary
time series only

• its variant (e.g. Vector
Error Correction
Model) can be applied
to co-integrated series

VAR LSTM

• data preprocessing
is a lot more involved

• network
architecture design,
model training and
hyperparameter
tuning requires much
more efforts

VAR vs. LSTM: Model Implementation

• data preprocessing
is straight-forward

• model specification
is relative straight-
forward, model
training time is fast

VAR LSTM

What were not covered in this lecture?

As this is an introductory, 30-minute presentation on AR-
type and NN-type models, I did not cover the following
topics:

• State Space Representation of VAR
• Kalman Filter
• Many regime-switching version of AR-type models
• Variation of VAR
• The many variations of RNN and LSTM

Thank You

jyau@Berkeley.edu
https://www.linkedin.com/in/jeffreyyau/
https://github.com/jeffrey-yau

Big Data and Machine Learning Leaders Summit
Hong Kong 2018

